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ABSTRACT

Combat models often involve target detection times which may vary with
different observers due to characteristics of personnel, or detection systems. They
may also be affected by different environmental factors such as visual levels, sea
states, terrains, etc. There is often interest in quantifying the effects of different
observer characteristics and environmental factors on detection times. A hierarchical
gamma,/Weibull regression model is considered which can incorporate observer
characteristics and environmental effects which may influence the time to detect
targets. Numerical procedures for the estimation of parameters of the hierarchical
gamma/Weibull model based on maximum likelihood are described. Results of

simulation experiments to study small sample behavior of the estimates are reported.
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= I. INTRODUCTION

A. BACKGROUND
- Combat models often involve target detection times which may vary with
" different observers due to characteristics. of personnel, or detection systems, They
miay also be affected by different environmental factors such as visual levels, sea
<fates, terrains, etc. There is often interest in quantifying the effects of different
observer characteristics and environmental factors on detection times. In Chapter
TII a-hierarchical gamma/Weibull regression model [Ref. 1] is considered which can
incotporate observer characteristics and environmental effects which influence the
time to detect targets. Numerical procedures for the estimation of parameters of the
hierarchical gamma/Weibull model based on maximum likelihood are described,
. ‘ Results of simulation experiments to study small sample behavior of the estimators
are reported. In the remainder of this chapter, two models related to the one
considered in this thesis will be described. Numerical procedures for parametric
estimation for these models are studied in Bae [Ref., 2]). Experience gained

concerning the numerical stability of these procedures will be described.

B. TWO RELATED MODELS
Two parametric models for the distribution of time to detect targets were
considered in a thesis written by a Korean officer,Mr.Bae in Sept.,1989 [Ref. 2].
Model 1 :[Ref.2:pp.2-14] supposes that there are M observers. Observer i has
parameter A, which characterizes the ability of the observer to detect a target.
Observer i is presented with N, targets. The parameters of all M observers,

ApA,,..,Ay, are assumed independent with a common two parameter gamma

| _




distribution. Given A, the detection times of observer i are conditionally
‘ independent, having Weibull distributions with known shapé parameter e* and
known scale parameter uij’ for j=1,2,.,N;. Some of the¢ detection times may be
censored. Bae [Ref. 2:pp. 2-20] reports on numerical procedures to find the
maximum likelihood estimates for the shape and scale parameters of the gamma:
distribution.
Model 2 : is a Weibull regression model [Ref.2:pp.21-30]. It assumes observer
i has explanatory variables Xy, X3 ..., Xy, relating to his j™ target representing
factors which influence his time to detection. The detection times for the observers
are independent random variables having Weibull distributions. Again, some of the
detection times may be censored. The scale parameter of the Weibull distribution for
the detection times of the j"™ target by observer i is of the form p,.l.:e""n Y where
503-=5:ka51: ; the shape parameter is of the form eY | Bae [Ref. 2:pp. 21-36]

kel
reports on numerical procedures to find the maximum likelihood estimates of {£;}

and {B,}.

C. OBJECTIVE AND METHODOLOGY IN THE COMBINED MODEL

The main effort of this thesis will be to study a full hierarchical gamma/Weibull
regression model which is a combination of the two previous models, Since the
models considered in Bae [Ref. 2] will be special cases of the one considered in this
thesis, it is expected that instabilities found in the numerical procedures to estimate
the parameters in the two previous models will appear for the combined model. Two
numerical instabilities that result from the numerical procedures of Bae [Ref. 2] are
described below.

In Model 1, a modified Newton-Raphson method [Ref. 3] is applied to solve

the nonlinear system of equations for the maximum likelihood estimates of the




gamma patrameters. It is found that, particularly for small sample sizes, the slope of
the likelihood surface is. very flat resulting in numerical instability for estimation of
the s@al‘e ‘parameter 7. As a result, in the full hierarchical model presented here we
have used a single parameter gamma distribution as the second stage model. The
maximum likeliliood estimate of the parameter is found by the bisection root search
method:[Ref, 4]. -

A numerical overflow phenomenon was occasionally found in the Weibull
regression model while iterating the Newton procedure for {¢;} in Model 2
[Ref.2:p.25]. Once again, the flatness of the relationship determining the estimate
of {§;} resulted-in this instability. As a result, the Newton procedure to determine
{&;} in the gamma/Weibull regression model of this thesis has some checks to detect
this numerically instability.

In Chapter 1I, a numerical procedure is presented to find the maximum
likelihood estimate for a single parameter gamma version of Model 1. In Chapter III,
the full hierarchical model is presented and numerical procedures to estimate the
parameters given. In both chapters, simulation results are presented to study the
small sample behavior of the estimates. All simulations were carried out on an IBM
3179 G mainframe computer at the Naval Postgraduate School using the APL
GRAFSTAT random number package [Ref. 5],[Ref. 6].

We hope that the hierarchical gamma/Weibull regression model and these
estimation procedures will be a useful tool to describe and predict target detection

times, which are one aspect of the effect of human performance on the battlefield.



II. A SINGLE PARAMETER GAMMA HIERARCHICAL MODEL

A, MODEL DESCRIPTION

This model s very similar to Model 1 in [Ref. 2)*. The difference is that the
parameters A, i = 1,2,..,M, which reflect the abilities of observer i to detect targets,
aré assumed to be independent having a single-parameter gamma distribution,
GAM (o, ) rather than having two parameters. The form of gamma density function

used here is

g0) = 2O w0 o g, (2.1)

For numerical reasons we will parametrize a as e". For convenience we will
reiterate the remainder of the assumptions of Model 1 given in [Ref. 2]). Given A;
= @, the times it takes for observer i to detect tafget By = 1,2,.,N;, denoted by Uy,
are assumed to be conditionally independent random variables with Weibull

distributions , WE p..,e'z‘ having cumulative distribution function
i g

P{Ust|A;=6}=1 - eXp{-B(t/ui,- ‘-z'} >0 (22)

independent of other observers. The variations of the A, are introduced to represent

the individual differences between the observers. When the i™ observer is presented

"with his j"" target, only an opportunity time Oj; is allowed for him to detect it. An

observer either successfully detects the target within this time or never detects it.

! In the model of [Ref. 2], a two parameter gamma distribution is used.



Data. for the i™ observer consist of times of detection for the successes and the

lengths of opportunity times for-the failures. For eachi = 1,2,..M,j = 1,2,..N;,

let
Y; = minlnU;n0,) (2.3)

and
_l 1 Ui 2.4
Ay —{ 0 otherwise @4

The Y;; are the censored In-detection times and 4y is an indicator of whether the In-

time to detect the j™ target by the i observer is censored or not. Let

N
C;= XA, (2.:5)
jel

be the number of targets detected by observer i. In this chapter, we will assume the
Weibull parameters {p;,} and {{;} are known constants, and we are only interested
in estimating the gamma parameter 7. In the next section, the likelihood function
for n is given and the bisection method for finding the maximum likelihood estimate

of n is described. In the final section, we present results of a simulation study of the

behavior of the estimators for small sample sizes.




B. MAXIMUM LIKELiHQOD ESTIMATION AND THE BISECTION ROOT
SEARCH
1. The Likelihood Function
Given A, = 4, the conditional likelihood function [Ref.2:p.3] for dbserver

i using the censored In-times Y;; is

L{u.£|0) = [ee("" g g ] exp[—ee(’”'i”"")'-h]. (2.6)
ja
Let
S, = Eexp{( - Inp)e 'E'} 2.7)
and
K, = exp{EIA {( -lnp,v)e‘z’ - Ei] } (2.8)

Equation (2.6) can be rewritten as follows :

L{u,E[6) = 6K exp(-65)) . (2.9)

From the equations (2.1) and (2.9), it follows that the unconditional likelihood

function for observer i is



Lju,£,0) = [TL{u,510)g(0)0

S LG '
, fe 5) G (2.10)
| « Gl
- K___“__H (e+k) .

(8;+ )" &0

JC";‘I

In equation (2.10), if C; = 0; then [] (¢+k) = 1 . Recall the parametrization o
kBo

= ¢", The unconditional In-likelihood function for observer i can be rewritten as

lnLg(u-si’n) =
o1 2.11)
InK; + e"n - (Ci+e")In(S;+e") + X In(e"+k)
k=0
1

where if C; = 0, then E In(e"+k) = O . Since the observers are independent, the

unconditional ln-likelihoc;d for all M observers is

InL, =

]

Mz

—

InL =

(2.12)

=

cr1
{an‘.\ue“ n-(C;+e")In(S;+e")+ ﬁ: 1n(e"+k)} .
. k=0

i=

—

In this chapter, we will focus attention only on finding the maximum likelihood

estimate of n. The derivative of the In-likelihood with respect to 1 is




= f(x) =
on )
Y e et (2.13)
ey {n + =1 - In(S+e") + . .
?:l: {‘n S;+e" i+ k=0 e"+k

\"I"he maximum likelihood estimate for 7 is the-solution of the equation () = 0
2. Bisection Root Search for 7
Initially, the Newton procedure was used to numerically solve the equation
f(n) = 0. Unfortunately, the procedure frequently either convergéd to an
unteasonable number or encountered problems of numerical instability. Plots of f(n)
indicate that f can have multiple zeros. A:representative plot of f is shown in Figure
A ? (next page). In Figure A, one v symbol indicates a zero of f, while two v

symbols indicate the reasonable root to be used as the estimate for .

% Thisis a typical graph for f(n) which was generated for simulated data with O=10, M=15,N=15
and random seed = 16807. The true value of 1 is 1.
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Figure A Multiple Roots of the Derivative of the In-Likelihood Function for

As a result of these possible multiple zeros, the bisection root search method [Ref4]

is used to solve f(n)=0. The following sub-section will detail the estimation

procedure for n.



;- & nifiat Estimate forn

The initial-éstimate for # is-similar to its initial estimate in the two-
parajne"t@r ‘gamma model [Ref. 2], and is obtained by setting 3 8, = 0 in that

- procedure.- Cohsequentially,wthe initial estimaté of 7 is

T
o @)
where
m, = -0.5772
M N '
-E)2
o IXafytawge] 2.15)
m, = 3 .
EEAU
i=3jul
a2 a2 32 0 4
If mz—-ml»——G— <0 ,setn°=0" -

b. Determination of Bounds for the Root
The purpose. of this step is to bound the root that will be used as the
estimate between two points, called n; and n;. One of these points is n° and the

other is found as follows :

3 In MrBac’s model {Ref2), the regular gamma distribution is parametrized with shape parameter v =e"Pe

and scale parameter a=e". Setting =0, a=v=¢" yields the one-parameter gamma distribution.
p g n p

2
. -~ ~ 1: . g - *
4 The cstimate mg-mf-?<0 suggests that the variability of the data is small, Hence, it

might be better to set n° equa! to a large positive number, such as 13. A topic for future research is
to explore betier initial vatues for » in this default case. -
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7,200 kxd

Se e i0xd. k=123

’whei'e".f& is:a-small increment.
Compare the signs of f(n,): and f(ng) with f(no), until the first different sign from £(n°)
is.found. This yields a bound.on the closest root. to-n°.
c. Bisection Seaich

After determining the left bound, 1, and right bound ,ng, we begin
the bisection search by picking the midpoint between them, called "7y, and computing
the value of f(ny). If f(ny) and f(n,) have the same signs, the root is on the other
side of ny; thus, move the left bound n; to midpoint ny. If the signs are different,
move the right bound to the midpoint. Iterate the bisection search until

N~ Ng

My
C. IMPLEMENTATION OF THE SIMULATION AND RESULTS

<0.01 . The maximum likelihood estimate of n is ny,.

1, Simulation
In order to study the sampling properties of the maximum likelihood
estimate of n, different numbers of observers (M), targets (N,), and opportunity times
(Oy) are used as inputs to the simulation. Each set of inputs (M,N,O;) has a
simulation run .of (R) 100 replications and each run begins with the same initial
random seed (466801743). Statistics, of mean bias (M.B), mean square error (M.S.E)
and their standard errors ( S.E(M.B) and S.E(M.S.E) ), are computed accord.ing to

following definitions :

R
MB = %E @, - (2.16a)

r=1

11
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AT IR

S frhi:R .
SEQLE) = a3 (6, ~1)-MB} (@:160)
= reng ™

X ;
Y ,-n)? (2.172)

1
MSE = =
Ry

R
S 2 (2.17b)
R(R—2)§((n’ n)*-M.S.E)

S.E(M.S.E) = J

_ where 1, represents the point estimate of parameter 7 in the r'" replication. The

fraction: of detection level or the averaged uncensoring level (UC) for R (100)

replications is determined by

UC=-—§:—-—' ( )

where C,(r) is the number of targets detected by observer i in the r' replication and
Ni(r) is the number of targets presented to observer i in the r'™ replication.
Theoretically, the longer the opportunity times, the higher the UC level should be.

An outline of a replication in the simulation is as follows :

12
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:a. "~ Input 10: Simulgtipﬁ

e M the number of observers ( Possible values-are 15,25 and 35)

¢ N, the number of targets presented to-the ith observer , where i =
1,2...M ( Possible values are 15,25 and. 35)

y the opBortum'ty time for ith observer to detect the jth
target,(Possible values are 10 and 15). All of the opportunity
times are the same,

o & the shape parameter of the Weibull distribution for ith observer,
where1 = 12, .M ; (Set § = Oforalli)

o p the scale parameter of the Weibull distribution ,WEI(g; , e);
‘(Set ﬂ,‘l =42 )

¢« n the parameter for the single-parameter gamma distribution ,
‘GAM(a,0) , with @ = ¢ ; %Set the true value of n = 1)

b. i ion ri server

+ Generate independent single-parameter gamma rv.’s A; from
GAM(a,a),having the density function as in equation (2.1).

«  Generate independent exponential distribution r.v’s W;; with mean
1ie. Wy ~ EXP(1) for all i and j
Wi] A

=pu7— .5
i

o  Compute the target detection times : Uy
«  Compute the recorded In-times Yj; as in equation (2.3).

«  Compute 4;; as in equation (2.4).

W..\e'i t ) AT
5 plplE st|4;=0 = P{W;<6|— = 1-exp{-6| — which is the
4 Bij Hy

conditional Weibull distribution of equation (2.2).

13
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¢ Initial n.and'Bisection Search

o Compute #, asinequation (2.15).and determine the initial value
- of n.as in.equation (2.14).

o Perform the Bisection root 'search- procedure for the maximum
likelihood estimate. of ; shown as the flowchart in Figure B.

All these procedures were written.in APL codes,named "SIMULA1",
"GAMMA", and "FVALUE", which are listed in Appendix C.

14
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2. Results

The results of the simulation experiments appear in Tables and graphs in
Appendix A, Tables 1 and 2 ¢contain the general statistics for the bias of 4 at the
opportunity times O = 10 and 15 respectively. Table 3 in combination with box
plots, shown in Figures 1 through 3, presents statistics of the bias of the estimates of
n as a function of the numbers of targets and observers in the case O = 10, Figures
4 ~£o 6 show histograms of the bias with the number of targets fixed and the number
of observers changing, Similarly, Table 4 and Figures 7 through 12 focus on the case

O = 15, In summary, the simulations indicate the following :

. Op}l)_ortunity time (O)
ables 1 and 2 indicate‘that a longer o§portunity time is-reflected in
a higher uncensoring level (UC), which slightly decreases the mean
bias (M.B) and mean square error (M.S.E) of 1.

o The Number of Observers (M)

Increasing the number of observers for a fixed number of targets
results in greater changes in the mean bias and mean square error of
n than increasing the number of targets with a fixed number of
observers. All the box plots and histograms display this tendency.
This phenomenon is quite reasonable, because the parameter 7 in
gamma distribution reflects the variability in abilities of observers.
Hence data with more observers will provide better estimation of
('less bias and standard error ).

o The Number of Targets (N;)
The box plots indicate that increasing the number of targets for a
fixed number of observers has a small effect on M.B and M.S.E of
with no systematic trend.

16




111, THE HIERARCHICAL GAMMA/WEIBULL REGRESSION MODEL

A,  MODEL DESCRIPTION

Recalling the assumptions of the model, we suppose there are M observers,
indexed by i. The i™ observer is presented with N; targets, indexed by j. The
variable Uj; is the time it takes for observer i to detect the target j. Let X;; , Xjp yoeny
X;, be the values of environmental variables (e.g. terrain, sea state , atmospheric
condition etc,) which may affect Uy Given the quantified value of the ability for
observer i, A; = §, the Uy’s are assumed conditionally independent random variables
having Weibull distributions, WEI(py,c'g‘) ,'where the scale parameter, instead-of

:being constant, has the form

By = exp(x B} = exp{éxwpk}. (3.1)

The regression coefficient B is the contribution to the Weibull scale parameter of
the k™ explanatory variable. B, is usually the constant term in the regression. The
random variables {A} are assumed independent from a single parameter gamma

distribution, GAM(a,&) with a = e",

B. MAXIMUM LIKELIHOOD ESTIMATES FOR ALL PARAMETERS
The model assumptions detailed above are the same as those in Chapter II,

except that the scale parameter p, in the Weibull distribution is now a function of

17
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the explanatory variables. In this section we consider the estimation of ;ill the
paraméters of 1, {8} and'{¢,}.5 -
From equations (2.7), '(:2:@8,); (2.12) and equation (3.1), we ‘can rewrite the

unconditional In-likelihood function for all M obseryexsﬁas»follo\xfs :

M . -
g(n.E.). = E;{»an: + e - (CrreMn(S;re) + Eln(e"+k)}

Gl - k=0

InL =

Yj » 4, and C; are defined in equations (2.3), (24) and (2.5) respectively.

In the following sub-sections, we will describe the procedures which are
employed to estimate all the model parameters. The general procedure includes the
initial rough estimation of {B,} and {¢;} without the hierarchical gamma rv.s; a
variability check for the need to include the hierarchical gamma parameter n; and
finally, a large recursive procedure for estimating all the model parameters if a
hierarchical model is necessary.

1. Initial Estimation of a Simple Weibull Regression Model

An initial model for the data is the simple Weibull regression model for

the target detection times described previously as the Model 2 of Bae [Ref. 2:pp. 21-

30]. The key steps of the estimation procedure are summarized as follows :

¢ In the Model 2 of Bae [Ref. 2}, no gamma variable was involved. Only the Weibull parameters
{B.} and {&;} were considered.

18




Step-L.1 : Tnitially, sét” x,B° = InU, and € =0.
Step-1.2 : This is an iteratively re-weighted regression step; cf. McCullagh

and Nelder [Ref. 7).
: Let

Ty = ( -4 5_0) 33

Wy = ‘/,exp{ru} ; (34)

o —
Uy, = xw'wije-l: ; where h=0,1,...p (3.5)
A, A +wl )
zy = . +w”)+2uw, By = L:L;w")-rwve E?xijﬁ_". (3.6)

i

Regress the dependent variable z; against the independent variables uy,

for h = 0,1,...,p ; e.g. the estimate has the form

= (QT _Q)-l Uz 3.7

where

7 From this page on, all parameters with superscript 0 imply the current values of their estimates.
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:f | [ Tt
1% | Uy« -« By |
Lijy | Mg ¢ oo o Upgp}
12, Uino + + + Wiy |
Zn | Yo+« » Uiy
A u .. U
A RS ST X Honp (3.8),(3.9)
A}
L1 Hpio + + + HBuip
ZaNy| Yo o 0 M)

Step-1.3 : Compute the new §; by an approximation based on Newton’s

procedure. First, update the value of

0
ry = (yu - xuﬁ")e'z‘ , where p°=1B. (3.10)

Compute

20
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. & ] .
: {C‘ _}Erﬁ[;Aij‘.,‘.fe?(p(rij)]}

i , N, N | .
{— C,- Er;exp(rij‘.)} (3.11)

’ j=1 ‘

, .

where C,.=EAU
j=1
Step-1.4 : Update ¢; and B,
8 =4

‘[52 = B,  where k=0,1,..p

Compute the new value of xuﬁ_" = é)oxw‘ B: and iterate the regression,
starting at Step-1.2, for one more time.
2, Does the Simple Weibull Regression Adequately Account for the
Variability of the Data ?
The full hierarchical model will be used if the data indicate more
variability than can be described by the simple Weibull regression. If the data do

come from the simple Weibull model, then

U\
B j=12,.N,
By

21
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" will have the same distribiition as.independent exponential random variables® with

rﬁ@@n 1. To-assessthe variability not accounted for by the:simple regression model,

]
By (3.12)

M
and N=XN, .

is]

.. we-compute

R a2 _ 1 .
L % Gy

Since the variance of a unit exponential is 1, if 62 < 1 ,then we will stop the model
Y . P

25 > 1, we go on to the

fitting with the simple Weibull regression model. If 6
hierafchical model to explain the extra-variability, Unfortunately, crude estimate of 62
uses botﬁ the observed and unobserved Uy, A topic for future research is to improve
the estimate of the variability not accounted for by the simple regression model.
Step-1.5 : If 6‘% < 1, stop and use the Weibull regression model only.
Otlierwise, the data will be modeled with the full hierarchical model. A recursive
procedure to estimate , {8} and {¢;} follows and is initialized with {B:} and

{E?} computed above,

- ¢-(‘
8 P{Ui}-st}=P{|J.,.j(Wﬁ)’{’$t}=P{W‘.jS(t/ k) 6'}=1 - ) which s the pure Weibull

distribution.
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3. A Recursive Estimation Procedure for the Parameters of the Fuﬂ‘

“Hierarchical M’pdéi

The partial derivative of equation (3.2) with-respect to #; aaﬂ , is
A an

the samé as the derivative of the In-likelihood with respect to 5 for the model of

‘Chapter II. The derivative appears in (2.13) and once again the problem is to solve

the equation f(7)=0. Using the estimates {B:} and {E?} an initial .estimate for

n is computed as in equation (2.14) ; that is

2
. = -h[,;,g-,;,g_n_] (.13
6
‘where
m, = -0.5772
M Ny o -t
P Caal G19)
~ _ ;]:1
m, = o .
EEAU

i=1j=1

2
a2 A2 T
If =il - < 0,setn®=0."°

In addition to determining the bounds for a reasonable root to be the
estimate of n as described in Chapter II, a check for the shape of f(n) is also
performed. This additional check is performed because two of the simulation

replications exhibited a very flat f(n). The graph of f(n) for one of the two

? Same as footnote 4 on page 10.

23




T PO Y - T = I yCa PRV

\ N L Co . \ETA=~501:035

2 .
w -y
N 3 ~
\'i’\l~ ‘
S I
N
~40 -20 J 20
ETA Y
‘ . ETA = 35 70O 180
v © PR 0 & 160 1%0 130 ‘m ,
! A ! -
t
N B

F(ETA)
=3%10%" —2x10% —~1x10%

ETA

Figure C An 1ll-Conditioned Derivative of the In-Likelihood Function for n

The graph in Figure C indicates that the values of f(n) are asymptotic
to a fixed nonzero value as n tends to -o; this behavior is the same as in Figure A.

However, when 5 is positive, f has very flat curve. The values of f(n) are positive

O The graph is onc of the only two ill-conditioned cases for f(n) in the simulations. This case
occurred in the gamma/Weibull regression model with ©0=10, M=15, N=25 and random seed =
1905665785. The other case occurred with O =15, M =15, N=25 and same random sced. The true value
of pis 1,
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, and close o zero but the ¢ curve does not actually cross zero-until 7 is large. The
,followmo check is:done to detect this situation: If a reasonable right.hand bound for
a zero of f(n) cannot be found check the values.of f(n) and f’(n) for n positive If
th,e absolute value .ofaf(q) s ‘less the €, and the absolute value of f'(n) is less than
” €3, where 1 >> €. > € > 0, then the simﬁl‘ation stops for .this set of random
Qtilmﬁers: and new random numbers are generated. Otherwise, perform the bisection
séarch:as ﬁdgscryibﬁd"i—x} Chapter II. In.the procedure, £/ (n) for n positive is estimated

as

(g ‘k)):, [ re): fbf (Mra-1))]

(3.15)
Mgy =N°H+kxd

Vhere N
NRee-ny= n°%+(k-1)x5.

The algorithm- of this bisection search. with the check for flatness of the curve of f

will be detailed later in Figure D.

b. The Least Squares Regression Procedure to Solve for {8,}
The previous estimates of 1", {[32} and {E?} are input to this stage.

The partial derivative of equation (3.2) with respect to B, is

dinL._ E {amK Cvem’ as,.] (5.16)

9P 9B, S+e" 9Py

where
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3 - aanNi ' ,‘Eb
‘ abk‘_j}-; Af-xp)e
as, N

BB; 1-1 [()’y—x 'B')e El] * "e 61)

M N | ,n° 6
R e (T )

0=dnL ~}E glj [l{'%’“ Cire? exp[(yv xvﬁ")e'ﬁ]}

| o, o L1 Sen (3.18)
-{exp[(yu—& .QO) E,}g; th‘ (Bh Bh)})( uke-E?) '
5 Let
C e -y y
wij - S +en exp{(}’,, UQO)e { } . (3 19)

The equation (3.18) can be rewritten as
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. F Ny 2.
4 .OlnL M i r_‘Al'i-*-w‘;j z '(o SO0\ | «riq 3.20
,0.-:*__..2‘:2:;._____“__,‘_._2;:)5'_'8 g, - X (3.20)
B, Tl Wy ke v ( * Bh) ( " )

Let
- 3.2
Uy = Kywye (3.21)
and
-A +w2- P ~-A +w2 0
w h=0 w v
i ¥
The equation (3.20) can be rewritten as
M N p
=33 [zij - 2 Uy Bh)“z;k (323)
i1 jel k=0

which are the normal equations for a least squares regression having dependent
variable z; and independent variables uy, k=0,1,...,p.

The solution of (3.23) is

B=({Uu'uz (3:24)

where Z and U are defined as in equations (3.25) and (3.26) respectively.
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z11 ullo ¢ o o uup
212 Uo + -+ Uiy
ZiN, Uivg - -+ Uy
Zn o + « + Uy
z=|"M| gt o Yy (3.25),(3.26)
%7} Unio « « » Uy
zmu umw . . v uwm

This procedure is an iteratively re-weighted least squares regression; ¢f. McCullagh

and Nelder [Ref. 7).

c. Newton Procedure to Solve for {£;}

The prior estimates of 7°, {p:} , {E°

} and {E?} are input to this

" stage. In order to update the values of {§;}, we need to have the partial derivative

of unconditional In-likelihood function for observer i with respect to §,. The

unconditional In-likelihood function for observer i is the same as equation (2.11).
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The derivative is-as-follows

i = ‘Si+e"9 0%; (3.27)
where Eexp{(yu X 110) E'}( )(y j xilﬁo)
&
Again, let
ru. = (yU - ,xijﬁ_o)e-zl .
The equation (3.27) can be rewritten as
dlnL, Ni Cre"
— = h(E) = -C, + Er,, -Ar———exp(r))| . (3.28)
o%; S+e
. Cre
Treating ———— as a constant, then
S;tel
8'lnL oh C+
- LG ~-C, - Eexp(r )r (3.29)
%k % Sren vl
olnL,
If ? = h(§) = 0 , the Newton equation for ¢; is
i
olnL, )
0= =HC = Wei) 5 He)em&i) - (3:30)
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' - Updaté ‘the-value bf ¢ by solving the following equation :

h(ED.

-——-h
3 & )

g =% -

(331)

As noted before, it is possible for equation (3.31) to be badly conditioned. If
|h( )|< e, and -é—E—h(E, <e, ,where 1>>¢,>¢,>0, then equation (3.31) is badly
conditioned. This behav10r happens occasmnally and occurs for only one §; out of

the M. To avoid this behavior, if |h(E))<e, and —-—~h 5: <e, , then put
1 E 2

§,= E? ; otherwise let §; be the solution to equation (3.31). Return to the bisection

search procedure and iterate steps 3.a to 3.c until

1l

1,.,M.

*

Inb nR'lﬁk "HE E‘l] < 0.01 for all k=0,..,p and i
| N Il B H 3 I ‘
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C. IMPLEMENTATION OF SIMULATION

Simulation will be used to-study the small sample behavior of the estimators
of the five parameters of the gamma/Weibull model. ‘Different numbers of observers
(M), targets (N,)-and oppottunity times (Oy)) are used as the input to the simulations.
For each set of input, (O,M,N,), the simulation run starts with the same random seed
as in Chapter II. The simulation is run until there are 100 (R) estimates of n. A run
will contain more than 100 replicatibns if the simple Weibull regression model is
found to describe the variability of the data for some of the replications or if the
procedure to find the estimate of n is badly conditioned. The statistics of mean bias
(M.B), mean square error (M.S.E) and their respective standard errors ( S.E(M.B)
and SE(MS.E) ) for all the estimates are computed using the definitions in
equations (2.16a,b) and (2.17a,b). The averaged uncensoring levels (UC) as
computed using equation (2.18) are also reported. The statistics for {£;} do not
include those ¢; for which |h(£))| < €,, (¢;=0.1), and |h'(€,)]| < €, (6,=0.01).

The remainder of this section provides an outline of one replication in the
simulation.

1. Input to Simulation

« M the number of observers ( Possible values are 15,25 and 35).

o & the shape parameter of the Weibull distribution for ith observer,
where i = 1,2,,.M; (Set & = O foralli).

°* 1N the parameter for the single-parameter gamma distribution,
GAM(o,0) , where o« =¢e"; (Setn =1).

o N the number of targets presented to the ith observer , where i =
1,2,..,M ; ( Possible values are 15,25 and 35).
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¢ Xy  the k™ environmental factor which affects the observation time
of the i observer when presented with the j™ target.

 O; the opportunity time for the i observer to détect the j™" target;
(Possible values are 10-and 15).

o {8} Tegression coefficients for the scale parameter of Weibull
distribution ,WEI( [T et ), where k = 0,1,2,..,p and

4D R
By = eXp{Exb.k'ﬁk} ;(setp=2;8,=08,8, =-02 and B,
k=0
=0.5).

Simulation of Data for the i Observer

+ -Generate a single-parameter gamma r.v..A; from GAM(a,a),having
density function as in equation (2.1) where @ = e¢" and'n = 1.

«  Generate environmental factors r.v. x; ; the X;, are independent with

normal distributions having mean p, and variance o; for k =
1,2,.,p; (Setp=2;p,=1, af =05 and p, =2, a§ = 1),
Put x, = 1 for all ij.

o  Compute the Weibull shape parameter g; as in equation (3.1).

»  Generate independent exponential distribution r.v.’s W; with mean
1yie. W, ~ EXP(1) for all i and j.

i A

W\
«  Compute the target detection times : U; = p(—‘i) .

« Compute the recorded In-times Y;; , censoring indicator 4; and C
using the definitions in equation (2.3) , (2.4) and (2.5) respectively.
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3, 'Initial ‘Estimate of 8.’s and E, in the Simple Weibull Regression Model

without the Hierarchical: Gamma r.v.’s

,Stgg-}.] v

Step-1.2 :

ep-1.3 :

Step-1.4

Initially; set xij;_B__(’ = U, and £ =0

Iteration for regression :

Compute r;; , W; , iy and z; as in equations (3.3) to (3.6).

!

Regress the dependent variable z; against the independent
variables u;;, for {8} as in equations (3.7) to (3.9).

Newton’s procedure for estimating ¢;

Update the value of r; as in equation (3.10).

Compute the new §; as in equation (3.11) with no need to check
the ill condition,

Put {&} = (¢} and {B}} = (By for all i=12.,M and

p
k=0,1,..,p. Compute new value of xijﬁo = X Xk B,(: and return
k= 0

to Step-1.2 for only one iteration.
Check for extra-variability in the data by computing the sample
variance &5 for the times Uy as in equation (3.12).

If 625 < 1, stop and quote the simple Weibull regression

model only with the parameters as estimated.
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Otherwise, exécute next the recursive procedure.

4, Recursive Procedure to Estimate the Parameters of the Full Hierarchical

Gémma/Weibull Model

Input : initial By k=0,L..p3 & ,i=1,2...M.
Step-2.1 : Initial condition.for gamma parameter ¢

P
o Update x 8 = ZxyBi
ke 0

«  Find the initial condition for n using equations (3.13) and (3.14)

2
If mi-mf-"? <0 ,setn’=0.

Step-2.2 Perform the bisection search for n using the algorithm shown in
Figure D (next page). The algorithm includes a check for the

flatness of the curve of f(n).
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N ray =n°+k><5

I re) (s -1)] where

" In the Algorithm, we let Ji(ng)~ 5 . =10+ (k-1)x8
RE-HT

?

and k is the current index of increments.
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. Step:3.1:

Step-4.1

Tteration for the regression coefficients ,{8,}

Compute w; , u; and z; using equations (3.19), (3.21) and
(3:22).

Regress the dependent variable z; against the independent
variables u, using equations:(3.24)., (3.25) and (3.26).

: Iteration for the In-shape parameters ,{¢;}, of the Weibull

distribution .

Step-4.2

P - 0
Update &vﬁ(’ = fokaﬁg and 1y = (y U xijﬁo)e "

Compute: h(E?) and -é—aé—h(if) using equations (3.28)- and

(3.29) respectively,
If |h(E)<e, and l%h(s?)lqz , for ¢, = 0.1 and ¢, =
i

001, keep &, = £ . Otherwise, update ¢, using equation
(3.31).

: Test for stop criteria

Iﬂ,,-nk|’|l3k-3gl,|€,--€?|
EIERI

i=1,.,M, then, stop aud record the estimates. Otherwise, set

If

} < 0.01 for all k=0,..,p and

n’=n, [52 = B, F.? = &, and return to Step-2.2.
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The smulatlon programs for this gamma/Weibull regression model, named:

"SIMULA?", "GAMWEI" and "FVALUE", are detailed in Appendix D.

D. RESULTS

Results of the simulation experiments are presented in Appendix B. The results
are presented in five sections. Each section shows results for one estimator; the
gamma parameter 1 and the Weibull parameters §; , 8, , B, and €, Each section
contains tables of statistics and histograms of estimate bias for different numbers of
observers (M or OBS), targets (N or TGT) and opportunity times.(O).

The first two tables in each section present the statistics for different
opportunity times ( O=10and O=15 in our case ). The next two tables organize the
information to highlight relations between the number of targets and the number of
observers and the statistics of the estimates, Histograms of the bliases' of the
estimates are also presented. All parameter estimates appearing in Appendix B are
from replications for which the full hierarchical gamma/Weibull is estimated.
Since §,=1 , the statistics for {¢;} are for the average of the {¢} for all the
observers in a replication. The average includes only those ¢,’s for which the Newton
procedure converged. The replications for which 61- < 1 and the replications in
which n could not be found are not used to compute the statistics appearing in

Appendix B; statistics concerning the numbers of these cases appear in Tables A and

B below.
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Thé,*s‘tatilstiés in Appendix B use 100 replications. Tables A .and B below show
‘ ; - tﬁé averaged uncensoring levels, the number of additional replications for which

) Ecoul‘d'sndt‘ bé fo‘uﬁd'due to tﬁe ‘ﬂatness,of f, and the number of times a §; could not
be found using Newton procedure due t§ the smallness of |h(¢;)| and |h’(§,)|. The

results of Tables—A and B (next page) are summarized as follows :

o Uncensoring level (UC) :
A longer opportunity time (O) is reflected in a higher average uncensoring
level (UC) The opportunity time O = 10 glves about 76% UC, while O
= 15 gives about 859% UC. This behavior is what we would expect.

o The variability of the data explained by the simple Weibull regressxon
Different parameter estimates in the sunple Weibull regression cause the
different number of cases for which { 6% < 1} for the same input of
number of observers and number of targets in Tables A and B. In both
Tables A and B, the cases of { 625 < 1} appear more frequently when
the number of observers (M) is smaller. This is reasonable behavior since
more observers tend to provide more evidence that a hierarchical model
is x;eed‘ed to explain the variability of the data. The manner in which

6 is computed prevents drawing conclusions concerning the effect of
censoring on the assessment of unexplained variability.

o Instability check for 7 :

There are only two replications in which n could not be found usmg the
bisection search for the root of f(n). The function f(n) for one of them
is plotted as in Figure C, and the function for the other is similar. Both
replications used the same random seed but had a different set of inputs,
(M)N;,0;). These two replications were stopped and new random numbers
were drawn This behavior did not occur in the model of Chapter II with
known parameters for the Weibull distribution.

« Instability check for € :
Smaller opportunity times tend to have more replications in which the
procedure to find §; is badly conditioned. The maximum number for any
case is 2.
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TABLEA : Coniparisqns,s of Uncensoring levels, Extra Variability Checks and Checks
of Numerical Instability'at @ = 10 = ,

Number of | Number of | Average | Number of | Num. unstable | Num. unstable
| Observers| Targets | UC |{ &% <13}  f(n) | handh' 2
15 | 764 | 11 0 1,
, 25 1 764% | 5 1 0
15 35 | 756% | .6 0 0
15 75.8% 1 0 1,
25 725 75.8% 2 0 1,
| 35 | 764% | 1 0 0
15 76.2% 0 0 24
25 76.3% 1 0 1,
35 3 | 763% |0 0 0

TABLE B : Comparisons oi’-Uncensoring levels, Extra Variability Checks and.Checks:

of Numerical Instability at O = 15

Number of| Number of | Average | Number of | Num. unstable | Num. unstable |
Observers | Targets uc |{ &% <13 f(n) hand i’
15 85.0% 23 0 0
25 85.4% 6 1 0
1 35| 846% | 11 0 0
15 84.5% 3 0 1
25 25 84.7% 7 0 0
35 85.3% 5 0 0
15 85.2% 5 0 0
25 84.9% 3 0 0
3 3 | 61% | 2 0 0

12 All the cases of numerically unstable h and h* were obtained while replicating the simulations
starting with random seeds a:999445582, b:444977940, ¢:538790986, d:999445582 & 153499930,
€:1011786849 and £:444977940.




In Appendix B, ‘the statistics for the average observer ¢;.do not-include those
individual ¢, for which the Newton procedure did not converge. The statistics for
do not in¢lude those replications for which the simple Weibull regression model was
used to describe the data. A summaty. of the results of the simulation experiment

shown in Appendix B follows :

o The estimate of the gamima parameter, 1

The mean bias tends to be positive. The histograms of biases indicate that
the distribution is skewed to the right. Since the variance of A, is e™, the
positive mean bias of n suggests that for small sample sizes the procedure
is‘indicating less between variability than there is in the data. Increasing
the number of observers tends to decrease the mean bias and mean square
error. Increasing the opportunity time has little efféct on mean bias and
mean square error. Increasing the number of targets has little effect on
mean bias and mean-square error. As noted in Chapter 11, this behavior
is reasonable.

o The estimates of the Weibull parameters, ﬁo through ﬁz

The first two tables in parts 2 through 4 of Appendix B indicate that all
the M.B and M.S.E of {8, } are quite small compared to those for n. This
is due to the larger sample size used in computing {B,}. An increase in
the opportun'ty time has little effect on the mean bias and mean square
error. Increasing the number of targets or observers with a fixed number
of the other yields small changes in M.B and M.S.E. However, increasing
both the number of targets and the number of observers does tend to
decrease the mean bias and mean square -error of {B,}. The M.B’s are
both positive and negative.

M
« The average estimate of the Weibull parameter, éaiEé ;

i=1
Since §; =1 in the simulations, the histograms and statistics include the
averaged £, for all the observers for which the Newton procedure for §;
converged. Generally, all the magnitudes of M.B and M.S.E of £ in the
first 2 tables of part S in Appendix B are quite small. All the M.B of the
averaged £ are negative. The M.B. and M.S.E. are slightly smaller for
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longer opportunity times. Increasing the number of targets or the number
of observers with the other fixed results small-changes in the M.B and
MS.E. Increasing both the rumber .of targets and the number of
observers tends to decréase the mean bias and mean square error.
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IV..CONCLUSIONS AND RECOMMENDATIONS

The main effort of thi§ thesis is to study thé small sample behavior of
estimators for a hierarchical gamma/Weibull regression model for target detection
times. This modél can also be used to describe and predict times to failure of similar’
machines, (e.g. engiies) in different environments, In t‘his thesis, the model assumes
that. there are M observers. The i observer is presented with N; targets, The
variable Uj; is the time it takes for observer i to detect the target j. Let xy; , Xy e
X; be the values of environmental variables which may affect U;. Given the
quantified value of the abiiity for ovserver i, A; = 4§, the Uij’s are assumed
conditionally independent random variables having Weibull distributions,

WEI(pV,e'E‘) , where the scale parameter has the form

By = exp{xuﬁ_} = exp{é)x.u.kﬁk} . The random variables {A;} are assumed
independent from a single parameter gamma distribution, GAM(,e) with & = €. A
numerical procedure based on maximum likelihood is used to estimate the
parameters of the model. The numerical procedure is iterative and uses a bisection
root search method for estimating the gamma parameter n, least squares regression
to estimate the Weibull In-scale parameters B, through 8, and an approximate
Newton procedure to estimate the Weibull In-shape parameters {€,}. Simulation is
used to study the behavior of the estimates for small sample sizes. Generally, the

numerical estimation procedures work well. There are few numerical problems. All
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‘the nean biases-and mean squafe errors of the estimates tend-to be small compared
to the theoretical inputs.to the simulation.

Topics for future research .include replacing the one parameter gamma
distribution with the two parameter gamma distribution in the hierarchical model and
exploring the use of EM methodology to estimate model parameters. The two
parameter gamma distribution arises as the posterior distribution of the current
model. Another area is to study using the fitted hierarchical gamma/Weibull model
to predict future performance.

It is hoped that the hierarchical gamma/Weibull regression model will be a
useful tool to describe and predict one aspect of the effect of human performance

on the battlefield.
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APPENDIX A. STATISTICS AND GRAPHICS FOR THE ESTIMATE OF
. IN THE SINGLE PARAMETER GAMMA MODEL

“Table 1. Mean Bias, Mean Square Error, Std. Error and Uncensored Level for y at

O = 10 in the Gamma Model

' Number bf, Number of — i . ‘ uc
‘Observers Targets M.B(S.E) M.S.E(S.E)

15 0.0727 (0.0497) 0.2477-(0.0693) 8§1%%

15 25 0.1027 (0.04306) 0.1967 (0.0269) 32%

33 0.067 (0.0466) 0.2173 (0.0369) 82%

13 0.1003 (0.0311) 0.1051 (0.0167) $2%

25 23 0.0566 (0.0304) 0.0935 (0.012) 82%

33 0.0682 (0.0274) 0.0784 (0.0108) 82%

15 0.058 (0.0281) 0.0807 (0.0129) §2%

35 25 0.0088 (0.0233) 0.0626 (0.0092) 82¢0

Kk 0.0472 (0.0221]) 0.05 (0.0103) 2%

Table 2, Mean Bias, Mean Square Error, Std. Error and Uncensored Level for 5 at
O = 15 in the Gamma Model

Number of Nlp}xbel‘ of i uc
Observers Targets M.B(S.E) M.S.E(S.E)

15 0.0014 (0.0434) 0.1886 (0.0413) 8Y%%

13 23 0.0884 (0.0428) 0.1875 (0.026) 90%

35 0.053 (0.0452) 0.2032 (0.052) 90%¢

13 0.094 (0.0303) 0.0998 (0.0131) 90%

25 25 0.0517 (0.03 ) 0.0911 (0.0115) 90%%

33 0.0706 (0.0273) 0.0785 (0.0103) 90%

13 0.0519 (0.0277) 0.0781 (0.0132) 90%%

35 25 0.0085 (0.0246) 0.0593 (0.0086) 90% 0

335 0.0471 (0.0216) 0.0481 (0.009) 90%%




Table 3. Ténidencies of Mean Bias and Mean Square Error for # at O = 16.in the

Gamma Model

, , M.B(M.S.E) of #;
| 1BT6T 233TGT 35 TGT
“150BS | 0.073(0.248) 0.103(0.197) ~0.067(0.217)
250BS | 0:1 (0.105) 0.057(0.094) | 0.068(0.078)
1 350BS | = 0.0580.081) 0.009(0.063) 0.047(0.03 )

o= 10 (UC: 82 PERCENT )
M= 15 <=> N =15

[ [
L]
NP
* ]
-~ L]
. ) ’ 3
< I .
IR \ x
% X b \J
a2 L
b4
® L g ° [ | ©-
ol
X
b,
} ) b { ] L

2
N=15 N=25 N=35:M=15 M=25 M= 35

Figure 1. The Tendencies of the Bias of 5 with changes in OBS and TGT at O= 10
in the Gamma Model: M = number of observers ; N = number of
targets.
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Figure 4. Comparison of the Bias of y between Different numbers of Observers with
TGT = 15 at O=10 in the Gamma Model: TGT = the number of

targets.
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Table 4, Tendencies. of Mean Bias and Mean Square Error fory at O = 15in the
Gamma Model "

M:B(M.S.E) of # ‘

I5TGT | 25TGT 33 TGT
15 OBS 0.061(0.189) 0.088(0.188) © 0 0.053(0.203)
25'0BS 0.094(0.1 ) 0.052(0.091) 0.071(0.078)
35 OBS 0.052(0.078) 0.008(0.059) 0.047(0.048)
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M= 15 <=> N= 15
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Figure 7. The Tendencies of the Bias of 5 with changes in OBS and TGT at O =15
in the Gamma Model: M = number of observers ; N = number ¢f
targets.
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Figure 8,  The Tendencies of the Bias of y with changes in OBS and TGT at 0 =15
in the Gamma Model: M = number of observers ; N = number of
targets.
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Figure 11.  Comparison of the Bias of y between Different numbers of Observers
with TGT = 25 at O=15 in the Gamma Model: TGT = the number
of targets.
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APPENDIX B.

L T-ABLESAANDHISTOGRAMS FOR 3

STATISTICS AND GRAPHICS FOR ALL THE
ESTIMATES IN-GAMMA/WEIBULL REGRESSION MODEL

Table 5. Mean Bnas Mean Square Error-and Std. Error for 4 at 0 =
‘GAM/WEI Regression Model

A

GAM/WEL Regression Model

‘Number of Number of . ul
. Observers Targets M.B(S.E) M.S.E(S.E)
15 1770(.0552) .3299(.0892)
15 2 1573(.0455) 2274(,0445)
35 0761(.0440) 1955(.0290)
15 0947(.0419) J811(.0420)
25 25 0371(.0313) 1003(.0206)
35 J1422(.0324) .1228(.0208)
13 J074(.0352 .1328(.0216)
35 25 0638(.0307) 0968(.0129)
33 0940(.0223) 0377(.0070)
Table ¢, Mean Bias, Mean Square Error and Std. Error for 4y at O =

Number of

Number of

A

Ui

Observers Targets M.B(S.E) M.S.E(S.E)
15 .2107(.0561) .3524(.1023)
15 23 J934(.0451) .2365(.0438)
35 Ad117(.0442) .2038(.0319)
15 J1170(.0418) A1851(.0434)
25 25 07535(.0314) 1021(.0222)
35 1434(.0314) J174(.0197)
15 .1450(.0336) A1315(.0228)
35 25 .0800(.0300) 0982(.0133
35 0968(.0219) 0566(.0072)




Table 7. Tendencies of Mean Bias and Mean Square Error for y at O = 10 in tlie

GAM/WEI Regréssion Model

. o V " M.B(MSE)of§ ,
, 15 TGT C25TGT 35 TGT
15 OBS L177(.330) 157(.227) 076(.196)
25 OBS 095(.181) 057(.100) 142(.123)
" 35.0BS J107(:133) 066(.097). .094(.058)
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Comparison of the Bias of 5 between Different numbers of Observers
with TGT=15 at O=10 in the GAM/WEI Regression Model:

= the number of targets.
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Figure 14.  Comparison of the Bias of 4 between Different numbers of Observers
with TGT=25 at O=10 in the GAM/WEI Regression Model: TGT
= the number of targets.
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Table 8. Tendencies of Mean Bias and Mean:Squaré Error for y at O = 15 in the
GAM/WEI Regression Model

~ M.B(M.S.E) of §
. o 15 TGT 25 TGT 35 TGT
1 150BS - 21(.352) o 193(.236) .112(.204)
25 OBS A17(.185) 075(.102) 143(.117)
35 OBS 145(.132) .080(.098) .097(.057)
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Figure 16.  Comparison of the Bias of 5 between Different numbers of Observers
with TGT= 13 at O=13 in the GAM/WE!L Regression Model: TGT
= the number of targets.
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Figure 17, Comparison of the Bias of 5 between Different numbers of Observers
with TGT=25 at O=15 in the GAN/WEI Regression Model: TGT
= the number of targets.
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Figure 18,  Comparison of the Bias of # between Different numbers of Observers
with TGT=35 at O=15 in the GAM/WEI Regression Model: TGT
= the number of targets.




3. TABLES AND HISTOGRAMS FOR 40

Table 9. Mean Bias,Mean Square Error and Std. Error for 0 at O = 10 in the

GAM/WEI Regression Model

| Nuinber of

A

" Number of B o

. Observers Ta‘rg_ets ~ MBGSE M.S.E(S.E)
15 -.0605(.0317) .1021(.0123)
15 23 | -.0234(.0278) 0764(.0109)
33 .0304(.0223) 0499(.0067)
15 0458(.0238) 0375(.0081)
25 25 -0167(.0222) .0487(.0052)
33 +0094(.0197) .0383(.0036)

13 -0067(.0198) 0386(.0067)
35 23 -0398(.0176) 0319(.0047)
33 0062(.0152) 0227(.0027)

Table 10, Mean Bias,Mean Square Error and Std. Error for 0 at O = 15 in the

GAM/WEI Regression Model

Number of

A

Number of fo
Observers Tm'gets I\'I.B(S.E) ]\’I.S.E(S-E)
15 -.0609(.0316) J015(.0127)
15 23 -0234(.0271) 0725(.0095)
KN 0263(.0224) 0498(.0003)
13 03065.0244) 03935(.0073)
25 23 -0292(.0210) 0439(.0049)
33 - 0185(.0184) 0335(.0033)
N -.0043(.0191) 0338(.0060)
35 23 -.0434(.0176) 0324(.0041)
33 -.0021(.0138) 0187(.0023)

63




-

Table I1. Tendencies-of Mean Bias aiid.Mean Square Erfor for 40 at O = 10 in-he
. GAM/WE] Regressioxn Model

M.B(M:S.E)of f, ©
, 15TGT © 25TGT . 33TGT
I50BS | -.061(.102) T -023(.076) 030(.050) ;
25°0BS 046(.051) -.017(.049) -.009(.038)
4 350BS | -.007(.039) -040(.032) .006(.023)

OBS = 15, 0 = 10 (.UC : 76 PERCENT )
N =15 N=25
- r .
b — &t NN
gnj ] Bl ]
u’-- E L
Eol LT Eol )
bb : ’-_ ]_‘—lv 3 n- i !""}1« (K et b 1 ]
-1 0 1 -1 0 1
84S CF BETAD BUS OF BETAD
N =35 '
[ —
Eol
. .

0
BAS OF BETAV

Figure 19.  Comparison of the Bias of 0 between Different numbers of targets with
OBS =15 at 0= 10 in the GAM/WEI Regression Model: OBS = the
number of observers .
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Lok T oBS = 25,0=10 ( UG : 76 PERCENT )
N SR ' N=1S ) N=25
j' . a' . - RF
a &k :- S i -
’ g ég; T
‘. .:‘ 1 ; J ™ -lL 1 ;' ]
N =35
i T
£+
’ ° = N ; !
-BIAS OF BETAD
" Figure 20.  Comparison of the Bias of 50.between Different numbers of targets with
0OBS =25 at O =10 in the GAM/WEI Regression Model: OBS = the
number of observers
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V o

OBS. = 35, 0= 10 ( UC : 76 PERCENT )
. ‘Ne= 15 ’ N-=.25
o 1 At 1
.g&é §2~
- _11 | e | J ° -:1 i o’ -lhl-'l ; )
BUS OF BETAD
N=35

Figure 21,

Comparison of the Bias of 0 between Different numbers of targets with

OBS =35 at O=10 in the GAM/WEI Regression Model:

number of observers
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Table 12. Tendencies of Mean Bias and Mean Square Error for f0 at-O = 15in the
- GAM/WEI Regression-Model. )

: | M.B(M.S.E)-of f, _
1 I5TGT |  25TGT 35 TGT |
) | 1508s -061(.102) T L023(.073) T 1026(.050)
- 250BS. | .037(.060) |  -.029(.044) -.018(.033)
35 OBS -.004(.036) -.045(.032) -.002(.019)

OBS = 15, 0 = 15 ( UC ; 85 PERCENT )
N = 15 N=25

™ T ¥y T

FREQUENCY
9 15
T
FREQUENCY
o 13
T T T T T T T TT

FREQUENCY
15
Tt T T T T T T

4
BUS OF BETAD

Figure 22. Comparison of the Bias of 0 between Different numbers of targets with
OBS =15 at O=15 in the GAM/WEI Regression Model: OBS = the
number of observers
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; o T f; B OBS =25, 0= 15 ( UC ; 85 PERCENT )
o : . Ne= 15 ‘ N=25
f ‘ R R ¢
. 1 T
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® =) ¥ ' ® = o 1 '
S OF BETAD
N =35
Rr -
|
b o 0 1 ' )
BAS OF BETAD

Figure 23, Comparison of the Bias of 0 between Different numbers of targets with
OBS =25 at O=15 in the GAM/WEI Regression Model: OBS = the
number of observers
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OBS = 35, 0 = 15 ( UC : B5 PERCENT )

N= 15 N=25
L1 T 'gL
b r -
éa- éab
el "ol
. = ] ' ' o ' C l 1 '
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Figure 24,

Comparison of the Bias of 0 between Different numbers of targets with
OBS =35 at O=15 in the GAM/WEI Regression Model: OBS = the
number of c¢hservers

69




3. TABLES.AND:HISTOGRAMS FOR §1

Table 13. Mean Bias,Mean Square Error and Std; Frror for fI at O = 10 in the
GAM/WEI Regression Model

" Number of | Number of ) B,

‘Qbservers . ' Targgts M.B(S.E) M.S.E(S.E).
15 0180(.0157) .0243(.0032)-

15 25 -.0002(.0140) 0193(.0026)

35 ~-.0010(.0112) 0122(.0017)

15 -.0154(.0132) .0173(.0026)

25 25 -.0006(.0096) 0091(.0014)

35 -.0036(.0080) .0063(.0010)

15 L0188(.0126) .0160(.0020)

35 25 .0094(.0096) 0091(.0011)

35 .0006(.0069) .0047(.0006)

Table 14, Mean Bias,Mean Square Error and Std. Error for 1 at O = 15 in the
GAM/WEI Regression Model

Number of | Number of ) ﬁ,
Observers Targets M.B(S.E) M.S.E(S.E)
15 .0079(.0145) .0205(.0028)
15 25 -.0060(.0127) .0158(.0022)
33 0076(.0107) 0113(.0014)
15 -.0214(.0127) 0162(.0024)
25 25 .0036(.0090) 0079(.0013)
35 -.0046(.0075) .0055(.0009)
15 0150(.0121) .0146(.0018)
35 25 .0077(.0092) .0084(.0010)
35 .0009(.0067) .0043(.0005)
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“Table 15,

Tendencies.of Mean Bias and Mean Square Error for f1 at O = 10 in the

. GAM/YEI Regression Model

o M.B(M.S.E) of §, ‘
o T ISTGT " 25 TGT 35 TGT
15 OBS 018(.024) .000(.019) -001(.012)
25 OBS -015(.017) -001(.009) -.004(.006)
35 OBS L0193:016) .009(.009) .001(.005)
OBS = 15, 0 = 10 ( UC : 76 PERCENT )
N = {5 N =25
19 ok F
&k 143 L
gm“ 5
Eol Eol
1 In t L
T paa——y R by pm—— 0 o o
BAS OF BETAY BIAS OF BETAL
N = 35
af |
R
R: | -1
i
»
-1.0 : —é.& '-L—,' 4 ' ofa . |t°
BAS OF BETAL

Figure 25, Comparison of the Bias of f1 between Different numbers of targets with

OBS=15 at O=10 in the GAM/WEI Regression Model:
number of observers
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0BS = 25:, 0 = 10-( UC : 76 PERCENT )

N =15 N.=25
RE = i1 ]
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Figure 26, Comparison of the Bias of 1 between Different numbers of targets with
OBS =25 at O=10 in the GAM/WEI Regression Model: OBS = the
number of observers




OBS = 35,0 = 10 ( UC : 76 PERCENT )
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Figure 27. Comparison of the Bias of fi1 between Different numbers of targets with
OBS =35 at O=10 in the GAM/WEI Regression Model; OBS = the
number of observers
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Table 16.

Tendencies of Mean Bias.and Mean Square Error for f1 at O = 15 in the
. GAM/WEI Regression Model

| M.B(M.S.E) of f,
15 TGT "~ 25TGT 35 TGT
15 OBS :008(.021) -.006(.016) .008(.011)
25 OBS -.021(.016) .004(.008) -.005(.006)
35 OBS: 015(.015) .008(.008) .001(,004)
OBS = 15, 0 = 15 ( UC : 85 PERCENT )
N =15 N = 25
2t M 1
éz- ] Ea-
% L.-é: SR D T o -éal‘]‘l-o s )
BAS OF BETA BUS OF BETAY
N = 35
R- -
1
?'1.0 —- -é«l 0 th : 1i0
BIAS OF BETAL

" Figure 28.

Comparisen of the Bias of 1 between Different numbers of targets with
OBS=15 &t O=15 in the GAM/WEI Regression Model:

number of observers
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OBS'= 25, 0:% 15 ( UC: 85 PERCENT )

N =15 N =25

F i ) 1]
8 . 8t
:é-, ‘ R
2:4 ' g:
- F
o= [.] .4
o . -

° 1 1 bl ° 1 I —Inﬂ_l 1 [
=10 ] 10 -10 0 10
WS OF BETAY BUS OF BETAY
N =35

NF |

a-

g L

ol.

nl

b ST R
BUAS OF BETAS

Figure 29. Comparison of the Bias of f1 between Different numbers of targets with
OBS =25 at O=15 in the GAM/WEI Regression Model: OBS = the
number of observers
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0BS =.35,°0 = 15 ( UC : 85 PERCENT )
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Figure 30. Comparison of the Bias of 1 between Different numbers of targets with
OBS =35 at O=15 in the GAM/WEI Regression Model: OBS = the
number of observers
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4, TABLES AND HISTOGRANMS FOR.f2

Table 17. Mean:Bi,as;Mean Square Error and Std. Error-for §2 at O = 10 in the
“GAM/WEI Regression Model . . ,

- Number of | Number.of | . 232 ] ]
i) Obs"er.\_rers: \Targets M.B(S:E) M.S.E(S.E)
15 .0167(.0097) .0096(.0012)
15 25 L0057(:0075) .0056(.0008)
35 -.0097(.0053) .0029(.0004)
15 -,0031(.0073) .00353(.0008)
25 25 .0040(.0054) .0029(.0004)
35 .0020(.0046) 0021(.0003)
15 .0002(.0062) .0038(.0006)
15 25 .0083(.0044) ,0020(.0003) .
35 -.0046(.0033) 0011(.0001)

Table 18. Mean Bias,Mean Square Error and Std. Error for 2 at O = 15 in the

GAM/WEI Regression Model

Number of | Number of iiz
Observers Targets M.B(S.E) M.S.E(S.E)
15 0185(.0091) .0084(.0012)
15 25 .0055(.0070) .0049(.0000)
35 -.0124(.0052) 0028(.0004)
15 -.0015{,0069) .0046(.0006)
25 25 0072(.0050) .0025(.0003)
35 .0024(.0042) .0018(.0002)
15 -.0016(.0057) .0032(.0005)
35 25 .0086(.0045) .0020(.0003)
35 -.0007(.0032) .0010(.0001)
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Table 19. Tendencies of Mean Bias and Mean Square Error for §2 at O = 10 in:the
GAM/WEI Regression Model

M.B(M.S.E) of i, _
15 TGT 25 TGT ' 35 TGT
15.0BS .017(.010) .006(.006) ~-,010(.003)
25 OBS -.005(.003). .004(.003) .002(.002)
35 OBS .000(.004) .008(.002) -.005(.001)
OBS = 15, 0 = 10 ( UC : 76 PERCENT )
N = 15 N =25
nt ] e} ]
‘Rf | &/ i
o 1] M'Iﬂ ] 1 ! ") o L 1 ‘LL_‘ L : ]

~0.4 02 0 02 04 =04 -2 [} ©2 0.4
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Figure 31. Comparison of the Bias of 2 between Different numbers of targets with
OBS =15 at O=10 in the GAM/WEI Regression Model: OBS = the

number of observers
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OBS = 25, 0-= 10 ( UC : 76 PERCENT )
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Figure 32,  Comparison of the Bias of 2 between Different numbers of targets with

OBS =25 at O=10 in the GAM/WEI Regression Model:
number of observers
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Figure 33. Comparison of the Bias of 2 between Different numbers of targets with
OBS =35 at O=10 in the GAM/WEI Regression Model: OBS = the
number of observers
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Table 20.

Tendencies of Mean Bias and Mean Square Error for f2 at O = 15 in the
GAM/WEI Regression Model

FREQUENCY
e 15
T T T

M.B(M.S.E) of , ,
,‘ 15 TGT 25TGT 35 TGT
15 OBS .018(.008) .006(.005) -012(.003)
1 250BS -.001(:005) .007(.002) .002(.002)
350BS |  -.002(.003) .009(.002) -.001(.001)
OBS = 15, 0 = 15 ( UC : 85 PERCENT )
N = 15§ N =25

oo

FRECUENCY
10 15
T T T T T T

T L (3 I )

04 0.2 0 02 04 0.4 0 a2 04
BAS OF BETAZ BUS OF BETAZ
N = 35

Rr PL
al o
g E I
Eal [ ]
[
ol
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<A -0.2 [} [X] 04
BIAS OF BETA2

Figure 34.

Comparison of the Bias of 2 between Different numbers of targets with
OBS=15 at O=15 in the GAM/WEI Regression Model: OBS = the
number of observers
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OBS =25, 0 = 15 (.UC : 85 PERCENT )
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Figure 35, Comparison of the Bias of 2 between Different numbers of targets with

OBS =25 at O=15 in the GAM/WEI Regression Model:
number of observers
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Figure 36, Comparison of the Bias of f2 between Different numbers of targets with
OBS =35 at O =15 in the GAM/WEI Regression Model: OBS = the
number of observers
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5. TABLES AND-HISTOGRAMS FOR &

Table 21. Mean Bias, Mean Square Error and Std. Error for ¢ at O = 10 in the
GAM/WEI Regression Model

1 Numberof | Numbér of 4 2 )
‘Observers | Targets M.B(S.E) M.S.E(S.E)
15 -.0318(.0067) .0054(.0007)
15 25 -.0158(,0056) .0033(.0005)
35 -.0131(.0048) .0024(.0003)
15 -.0226(.0053) .0033(,0005)
25 25 -.0078(.0036) .0013(.0002)
35 -.0025(,0038) .0014(.0002)
15 -.0196(.0044) .0023(.0003)
35 25 -.0065(.0036) .0013(.0002)
35 -0071(.0028) 0008(:0001)

Table 22,

Mean Bias, Mean Square Error and Std. Error for { at O = 15 in the

GAM/WEI Regression Model

Number of | Number of %
Observers Targets M.B(S.E} M.S.E(S.E)
15 -.0349(.0064) 0052(.0011)
15 25 -.0147(.0031) 0027(.0005)
35 -.0129(.0041) 0018(.0002)
15 -0181(.0047) 0025(.0003)
25 25 -.0089(.0037) .0014(.0002)
35 -.0027(.0035) .0012(.0002)
15 -.0192(.0041) .0020(.0003)
35 25 -.0049(.0033) .0011(.0002)
35 -.0083(.0025) .0007(.0001)
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Table 23.

Tendencies of Mean Bias-and Mean Square Error for £ at O = 10 in the
- GAM/WEI Regression Model

19

FREQUENCY
15
T T T T T

T T 3 & T 1 | T T

M.B(M.S.E) of &
15TGT 25 TGT 35 TGT
15 OBS -.032(.005) -016(.003) -.013(.002)
© 25 0OBS -.023(.003) ~-.008(.001) -.003(.001)
~ 350BS -.020(.002) -.007(.001) -.007(.001)
TGT = 15, 0 = 10 ( UC : 76 PERCENT )
M= 15 M=25
R 8 _
8 — i f
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0 &2 04
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Figure 37.

Comparison of the Bias of ¢ between Different numbers of Obse rvers

with TGT=15 at O=10 in the GAM/WEI Regression Model:
= the number of targets.
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TGT = 25, 0 = 10 ( UC : 76 PERCENT)
M = 15 M =25

p—

10
T

10
T

Figure 38. Comparison of the Bias of ¢ between Different numbers of Observers
with TGT=25 at O=10 in the GAM/WEI Regression Model: TGT
= the number of targets.
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T6T = 35, 0 = 10 { UC : 76 PERCENT )

M= 15 M=25
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Figure 39. Comparison of the Bias of ¢ between Different numbers of Obse rvers
with TGT=35 at O=10 in the GAM/WEI Regression Model: TGT
= the number of targets.
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Table 24. Tendencies of Mean-Bias and Mean Square Error for £ at O = 15in the
- GAM/WEI Regression Model 3 ‘

~ M.B(MS.E) of ¢
I5TGT 25 TGT 35 TGT
150BS ° -.035(.005) -.015(.003) -.013(.002)
25 OBS -.018(.002) -.009(.001) © o -.003(.001)
"~ 35 0BS -019(,002) -.005(.001) -.008(.001)

TGT = 15, 0 = 15 ( UC : 85 PERCENT )

M= 15 M= 25
¢ ]
& ar 1
! I
- E o
et ef 1
o O 7 ST T
8US OF 1 8US OF X
M= 35
e
8-

Figure 40. Comparison of the Bias of ¢ between Different numbers of Observers
with TGT=15 at O=15 in the GAM/WEI Regression Model: TGT
= the number of targets.
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Figure 41.

Comparison of the Bias of ¢ between Different numbers of Observers
with TGT=25 at O=15 in the GAM/WEI] Regression Model:
= the number of targets.
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Figure 42,

Comparison of the Bias of ¢ between Different numbers of Observers
with TGT =35 at O=15 in the GAM/WEI Regression Model:

= the number of targets.
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APPENDIX C. SIMULATION PROGRAM FOR THE ESTIMATE OF g

sRRR
[1]

[2]

£3]

4]

[5]

[6]

£71

[sl

£sl

[10]
[11]
[12]
[131]
[1u]
[15]
[16]
(171
[18]
[1¢e]
[20]
[21]
[22]
[231]
{2u]
[25]
[26]
[27]
(28]
[29]
[30]
[31]
[32]
£33]
[3u]
[351]
[36]
[(37]
[38]
[39]
fuol
fu1]
u2]

IN THE SINGLE PARAMETER GAMMA MODEL

V ReSIMULA13;M3N303I3d3KsL3ETA3OUT; PAGEsAVUCL 3 MB ; SENB 3 MSE 3 SENSE

anAARARARA  KEY GLOBAL VARIABES : BOOK1 ; BOOK2 ; UCL AARRARAAAA
RAARARAPRRRAAARARARAAARAARRAR DATA INPUT ARARARAARARAARARARARAAAAR
Me 15 25 35

N< 15 25 35

0« 10 15

FETA<1

TeJ<«K<L<0

RRAARRARARARARAAARARARAR START LOOPING THE SIMULATION 1 aaRrAARRRAAARRAAR
LOOPI s I<«I+1
LOOPJ s J«J+1
LOOPK s K<K+1

ARARARANARARARRARARAAR RESET THE RANDOMN NUNBER SEED nAAARARARAARARA
O0«0CI3,NLs],N[K]

ORL<«4668017u43

LOOPL s L<«L+1

BAARRARARARAARAAR CALL GAMMA ESTINATE FUNCTION rARRRARAAARAAARAR
RRR<ORL

OUT<«GANMACOCI] ,NLJI],NLK])

aaanAaRA RECORD UCL AND ALL THE ESTINATES IN REPLICATIONS naaAnAn
+>((L=1),L>1)/INTZ21,G01
INTZ1:PAGE<«(1,p0OUT)p (QUT-0,ETA)

+L0OOPL

GO1:PAGE<PAGE,[11(0UT-0,ETA)

TESTL:

+(L<100)/LOOPL

RRARARAR COMNPUTE AVE. UNCENSORED LEVEL AND ALL THE STATISTICS an
AVUCL<((+/PAGEL311):L)

MB<«(+/PAGE[32]1)%L

SENB<((+/(PAGE[32]1-MB)*2)#(LxL~2))%0.5

MSE<(+/PAGE[32]%2)+L
SENSE<((+/((PAGE[321%2)-MSE)*2)+(LxL=2))%0,5

L<0

arpannAan KEEP ALL THE INFORMATIONS FOR GRAPHICS AND TABLES nan
>(((IxJxK)=1),(IxJxK)=21)/INTZ2,G02

INTZ2:

BOOK1<(1,pPAGE[32])pPAGE[;2]

BOOK2+(1,4)p(MB,SENB ,NSE ,SENSE)

UcL<avucrL

+>TESTK

G02:

BOOK1<+BOOK1,[1] PAGE(;2]

BOOK2<BOOK2,[1] (¥B,SENB ,NSE ,SEHNSE)
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T 433

UCL<«UCL,AVUCL

TuuY TESTKs

[w53
Lued
7]

- [487

[ugl

+>(K<pN)/LOOPK

k<0 :
+(J<pM)/LOOPJ
J<0
+(Z<p0)/LOOPL
v




V R«GAMMA INPUT:M;N;O03ETAsETA0;XIXIO0sAsWNNUU; YsDELTA3C3;XB3RR
sM1sM2; T, DATA K3FL3FM3FR3LB3MP3RB; S
T1] AAAARRAARARAR SIMULATION INPUTS AND THEORETICAL PARANMETERS ARAR
, [2] M<«INPUT[2]
[3] N<«INPUT[3]
L4l  O0«(M,N)pINPUTL1]
[5] ETA«1
{61 NU<w,2
£71] XI0«§(N,M)pXI<«MpO
[8] ~ARRAARARARARARRRAAAR RANDOM NUMBER GENERATIONS ARRARARAARARAARAARA
[9]  A«R(N,M)pM GAMRAND((XETA),+%ETA)
[10] WW«(M,N)p(MxN) EXPRAND 1
C11] anAnRARRRRARAR DETECTION TIME AND UNCENSORING DATA ARRRARARARAARA
[12] U«MUX(WW+2 )% (xXI0)
[13] A<€WW«10
[14] Y<«(oU)L(80)
(151 C++/[2] DELT2«(eU)s(e0)
(18] 0«10
L1771 XBe@MNU
(18] mnnmamanrpRA INITIAL CONDITION FOR GAMMA PARAMETER ,ETA ARRARA
[19] RR<(¥Y-XB)xx("1xXIO0)
[20] M1<70.5772
[21] M2«(+/+/DELTAXRR*2)+(+/C)
[22]) ETA0<«0
[23] +(0>T«(((01)%2)+76)+(M2x2)~(M1%2))/BISECTION
T [24]  ETA0+T1xeT
[25) apARR FIND BOUNDS AND BISECTION SEARCH FOR GAMMA PARANETER,ETA an
(28] BISECTION:K+0
* [27] DATA«(S<+/[2]%RR),C
[28) FN<ETAQ FVALUE DATA
(29] amanmnnarARARAR FIND THE RIGHT AND LEFT BOUND FOR ETA RAARARARAAA
[30] BOUND:K<K+1
[{31] FL«(LB<«ETA0~Xx0,5) FVALUE DATA
[32] FR«(RB<ETA04+Kx0,5) FVALUE DATA
(331 > (((xFN)x(xFL))<0)/SETRB
[34] > (((xFMN)x(xFR))<0)/SETLB
(35] +BOQUND
[36] SETRB:RB<ETA0
[37]1 =+BISECT
[(38] SETLB:LB<ETAO
[39] nnmannRRARARARRR PERFORM THE BISECTION SEARCH FOR ETA rnARRARAARRA
[40] BISECT:
(U1l FMN<(MP<(LB+RB)+2) FVALUE DATA
(42] FL<LB FVALUE DATA
(3] >((RB-LB)<(|0,01xMP))/END
P fuul +((((xFM)x(xFL))<0), (((xFM)x(XFL))>0))/SHAPR,SWAPL
[45] SWAFPR:RB<MP
(u6] +BISECT
: {u47] SWAPL:LB<+MNP
(ugl] =+BISECT
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: [49] RRARARAARAAARARRARARAARA QUTPUT THE ESTIMATES ARAAARARAAAAAARARAR
.. - [50] END: B ‘
' [51) ETA0«(RB+LB):2
[52]1 R<((+/C)+MxN),ETAO.
v

‘ V R<ETA FVALUE DATA3;M3;S3C3SUBF3I
[1]  Me(pDATA)%2
[2]  S<M4DATA
[3] C<NVDATA
[4]  SUBF+0
[5] I<0
[6] LOOP:I<I+1
£7] +(CLIJ=0)/CHECKI
[8]  SUBF<«SUBF+(+/+(xETA)+(1CL[I]1)-1)
[9] CHECKI:
[10] ~+(I<M)/LOOP
[11] R<(XETA)XSUBF+(+/ETA+((S-C)+S+*xETA)+  1x@(S+*ETA))
v
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APPENDI\{ D. SIMULATION PROGRAM FOR THE ESTIMATES OF
ALL PARAMETERS IN GAMMA/WEIBULL REGRESSION MODEL

V R«SIMULA2;M;N;03I:;J;K;L;3X;E;ETA; ;B0 3B13B2;XI;0UT; PAGE; AVUCEX ;s MB

s SEMB; MSE ; SEMSE ; RRR

17 ‘ARARRARARAA KEY GLOBAL VARIABES : BOOK1 ; BOOK2 ;3 UCLEX RARRRARARA
[2] ARRARRRRARARARARARRAARRAAAAARA DATA INPUT ARARAARARAARARAARARAARAAAR

[3]1 M« 15 25 35
(4] N« 15 25 35
£5] 0« 10 15

(6] ETA+«1
(7] B0<«0,8
[el Bi1¢70,2
£9] B2+«0,5
[10] XI<«O

[11] RARARARARARRARAR START LOOPING THE SINULATION RARARAARARARARARAAR

[12] I<J<K<«L<E«X+0
[13] LOOPI:I+«I+1
[14] LOOPJ:J+J+1
[(15] LOOPK:K<«K+1

[16] nnARRARRAARRARRARRAAR RESET THE RANDON NUMBER SEED ARARRARARAARAARARA

(171 0<«0CIl,NM[J],N[K]
(18] ORL<«u466801743
(13) LOOPL:L«L+1

£20] AARARRRAAARAR CALL GAMMA/WEIBULL REGRESSION FUNCTION ARARRARARAR

(21] RRR<DRL

(23] anrRRAARARAR SKIP THE INSUFFICIENT VARIABILITY CASE FOR GAMMNA
f2u] +(0UT[2]%799999)/CHECKETA

{25] E<«E+1

[26] L<«L-1

{27] <TESTL

(28] annraR RECORD THE RANDON SEED FOR THE ILL CONDITION OF ETA
[29] CHECKETA:

[30] =(OUT{2127100000)/G0GO

[31] DO«'BAD ETA!

(321 O<«RRR

[33] IL<L-1

[34] =TESTL

(35] annnnanRA RECORD UCL AND ALL THE ESTIMNATES IN REPLICATIONS
[36] GOGO:

£37)] =+»((Z=1),L>1)/INT21,601

(381 INTZ1:PAGE<«(1,(pOUT)-1)p((T1+0UT)-0,ETA,B0,B1,B2,XI)

[39] X<X+(T1400T)

fu0l -+LOOPL

(u1]) GO1:PAGE<PAGE,[13((T1v0UT)-0,ETA,B0,B1,B2,XI)

[u2] X<X+(T140UT)
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fu3]

[uu]

[45]

Lusl
471

fusl
[ug]

[50]

[51]
[52]
(53]
[54]
[55]
[561]

[577

[58]
[59]
[60]
[61]
£62]
[63]
[6u]
[65]
[66]
[67]
[68]
[69]
[70]
[71]
[72]
[73]

m

ARRARRAARAR  RECORD THE RANDOM SEED FOR THE ILL CASE OF XI ammAARAA
+((T140UT )=0) /TESTL.

O«!'BAD XI!

O«RRR

‘ARRAARAARARRAARARARAPRRANRARAARRAARRAARARAARRAQAARRAARRARRARMURRARARAARARRA

TESTL: .
+(L<100)/LOOPL

ARRARAR COMPUTE AVE. UNCENSOET ) LEVEL AND ALL THE STATISTICS n

AVUCEX«((+/PAGEL;1])+L),E,X

MB«(+/[1] PAGE< 0 1 VPAGE)+L
SENB+((+/[1](PAGE- (pPAGE )pMB)*2 )+ (LxL-2))*0,5
MSE«(+/[1] PAGE%2)+L ‘
SENSE«((+/[1]1 ((PAGE%2)-(pPAGE)pMSE)*2)+(LxL~2))%0.5
L€E«X<0

RARARARARA KEEP ALL THE INFORMATIONS FOR GRAPHICS AND TABLES Ran
+(((IxIxK)=1), (IxXJxK)=21)/INTZ2,G02
INTZ2:

BOOK1+«(1,pPAGE )pPAGE ,
BOOK2+(1,4,pMB)p (MB,SENB ,NSE,SEMSE )

UCLEX« 1 3 pAVUCEX

+TESTK

Go2:

BOOK1<B0O0OK1,[1] PAGE
BOOK2+B0O0K2,[1]1((4,pMB)pMB,SEMB,NSE ,SEMSE)
UCLEX<«UCLEX,[1] AVUCEX
TESTK

+(K<pN)/LOOPK

K<0

>(J<pM)/LOOPJ

J<0

+(I<p0)/LOOPI

v

96




1]
£2]
£3]
[4]
5]
[6J

L7
- £8]

(9l
[10]
£11]

127
L3l
L1y

[15]
[16]
117]
£18]
{193
[20]
[21]
[22]
23]
[2u]
[25)
[26]
£27]
[28]
[29]
[30]
[31]
[32]
[33]
[3u]
[35]
[36]
[37]
[38]
[39]

VGANMWEITO]V
V' R«GANWEI INPUT M;N;O03;ETA3ETA03B3;B0O3B13B2; XI;XI0sAsHN;X13X2
MU U3 Y3 DELTA CyXB3RR: W;U03UL3U2; UU Z3Ii1VAR; M13M23T;DATAK
$FL3FLO3FM3FR3FRO3LB3MP3RB3CS3H; DH DIFFXI3BK3S3J3X3XX3BADXI
AARAARARAAR SIMULATION INPUTS AND THEORETICAL PARAMETERS mARAARA
N<INPUT[2]
N<INPUTL3]
0«(M,N)pINPUT[1]
ETA<1
B0<«0.8
Bl1<«70.2
B2+<0.5
XI0«R(N,N)pXI<Mp0
RARARARRAARARARAR RANDON NUMBER GENERATIONS AnARAARAAAAAARARARAAARA
A<«8(N,n)pN GAMRAND ((xETA),+*ETA)
WH<(M, N)p(MXN) EXPRAND 1
X¥«(M,N)p(MxN) NORRAND 1 0,5
X2«(M,N)p (MxN) NORRAND 2 1
ARARARRAARAA DETECTION TIME AND UNCENSORING DATA aannnRARARRAAAAR
NU<% (BO+(B1xX1)+B2xX2)
U«NU% (WW+A )% (xXI0)
A€H<NU<10
Y+ (eU)L (e0)
. C«+/[2] DELTA<(®U)S(®0)
0«10
RARRARARARRA INITIAL ESTIMATES WITHOUT GANMA R.V. INVOLVED namnnn
XB<olU
I<0
INTZ:I<«I+1
We(x(Y-XB)xx(T1xXI0))*0.5
U0« ((M,N)p1)xWxx(T1xXI0)
Ul<X1xpxx (T1xXI0)
U2<X2xWxx (T1xXI0)
UU“Q<3:MXN)P(9UO):(:Ui>: (902)
U0«U1+U2410
Z€®, (WxXBxx (T1xXI0) )+ ((T1XDELTA)+W*2)+W
W10
B<ZBUU
Z<«UU<+10
BK<B
XB<«B[11+(B[2]xX1)+B[3]xX2
RR<(Y-XB)xx(T1xXI0)
XI0<Q(N,M)pXI<«XI+DIFFXI<(C-+/RRx((TAxDELTA)+%RR) )+

((T1xC)-+/(RR%2)x%RR)

fuol
[u1]
(421
[u3]
[uu]
(Y53

+(I<2)/INTZ

annApARannRAR VARIABILITY CHECK FOR UNCENSORED TIMES nAanARARARAAN
VAR« (+/+/ (T1+(U+ (*XB))*x (x~1xXT0))%2 )+ (T1+NxN)

U110

ETZ0+«-99999

X<Mp1
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- [u6]

Tu7l

fugl-
fugd
€513

[52]
[£53]

[547

[55]
[561
(571
(58]

(597

[60]
(611
[62]
£63]
(6u4]
£e51
(661
[67]
(68]
1691
{701

£71]

£721
(731
741
£751
£761
£77]
£78]
[79]
£8o0]
£s1l
[82]
£83l
fsu)
(851
(86l
[871
[88l
(89l
(g0l
{91l
(921
£e31l
foul
£es5]
£9s6l

J<0 ,
+(VAR<1)/END m '
RAARARARARARAR INITIAL CONDITION FOR GAMMA PARAMETER ,ETA mnnpAaRA

RR+(Y=XB)%% (T1xXI0)

M1<~0,5772

N2« (+/+/DELTAXRR*2)%(+/C)

ETAQ<0

F+(0>T«(((o1)*2)376 )+ (M2%2)~(M1x2))/READY

ETAQ<«" 1xeT '
READY : BADXI<0 ]

rR LARGE RECURSIVE LOOP INCLUDING ESTIMATE OF GAMMA PARANETER,ETA

RECURSIVE:K+0
JeJ+1 ‘
DATA«(S«+/[2]1*RR),C
FM<«ETAO FVALUE DATA
ARRARAAR BiSECTION SEARCH METHOD APPLIED TO ESTINATE ETA ArARARAAA
BOUND : K«K+1
FL«(LB<«ETA0-Kx0,.5) FVALUE DATA
FR<(RB«ETAO+Kx0.5) FVALUE DATA
pRaRARARARARARARAAR DETECT ILL CONDITION FOR ETA araaRARARARARAAA
+(K<10)/CHECKLRB
*+(~(((|FRO-FR)+0.5)<0.01)A((|FR)<0.1))/CHECKLRB
ETA0<100000
+END
AARAAAAAARAAARARARKARRARRAAAARRARARRARRAARARRARARARARARRARARARARAR
CHECKLRB:
*>{(((xFN)x(xFL))<0)/SETRB
+(((xFN)x(xFR))<0)/SETLB
FLO<FL
FRO<FR
+BOUND
SETRB:RB<ETAO
>BISECT
SETLB:LB<«ETAQ
BISECT:
FN«(MP<(LB+RB)+2) FVALUE DATA
FL<LB FVALUE DATA
+((RB-LB)<(|0.01xMP))/REGRESS
>((((XFR)%(XFL))<0), (((XxFN)X(XFL))>0))/SWAPR ,SWAPL
SWAPR:RB<NP
*>BISECT
SWAPL s LB<NP
+BISECT
ApRAAR REGRESSION PROCEDURE FOR WEIBULL SCALE PARANETERS,BETA'S an
REGRESS s
ETA0<(RB+LB)+2
W« ((CS<QR{(N,N)p ((C+*ETA0)+S+*ETAQ) )x*RR)*0.5
Uo<((M,N)p1)xWxx("1xXI0)
Ul<X1xxx (T1xXI0)
U2«X2xHxx (T1xXI0)
UU"‘Q(:B ,MXA7)p(’U0),(,U1)’(:UZ)
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Atgzj

[1007

L1023
[103]

- £98]

£99]

[101]

[10u4]
[105]

[106]

(1071
{108]
f109]

L110]
[111]

[112]

[113)

[11y]
[115]
(i1e6]

1171

[118]
[119]
[120]

‘UO+01¢U2+10

28, (WxXBxx (T1xXI0))+((T1xDELTA)+Wx2 )4}
B+ZEUU .

JU<Z<10
arRpafARAA NEWTON PROCEDURE FOR WEIBULL SHAPE PARAMETER,XI'S mAn
XB<«B[11+(B[21xX1)+B[3]xX2

RR<(Y-XB)xx("1xXI0)

He(T1xC)+(+/02]1 RRx((T1xDELTA)+CS%*RR))

DH<("1xC)=(+/[2] CSx(*RR)XRR%2)
ARARARARAARAARAAA DETECT THE ILL CONDITION OF XI'S RARRARARAARARA
XXe~((|H)<0,1)A((|DH)<0.01)

+(~((x/XX)=0)ABADXI=0)/NENTONXI

BADXI*1

XXX
NEWTONXI:

XT0eN(WV N)pXI<«XIT+DIFFXI+XX*x(T1xH)+DH
an TEST FOR STOPPING CRITERIA AND UPDATE THE VALUE OF VARIABLES
*((X/(I(DIFFXI+XI) (BX-B)+B)<0.01)v(J250))/END

BK<B

RR<(Y~XB)xx(~"1xXI0)

+RECURSIVE
RAARRARARA QUTPUT UNCENSORED LEVEL AND ALL ESTINATES AARARAARAR
END:

R«((+/C)+NxN),ETA0,B[1],B[2],B03], ((+/XIxX)+(+/X)),+/~X
Y

99




o

T
o
]

INITIAL DISTRIBUTION LIST

Defense Technical Information Center
Canieron Station: .
Alexandria, Virginia 22304-6145

Library, Code 52
Naval Postgraduate School
Monterey, Califonia 93943-5002

Professor P. A. Jacobs, Code ORJC
Department of Operations Research

Naval Postgraduate School
Monterey, Califonia 93943-5000

Professor D, P, Gaver, Code ORGV
Department of Operations Research
Naval Postgraduate School
Monterey, Califonia 93943-5000

Professor Samuel Parry, Code ORPY
Department of Operations Research

Naval Postgraduate School
Monterey, Califonia 93943-5000

Lt. Col. Bard Mansager
TRADOC
Monterey, Califonia 93945

Epaminondas Hatzopoulos
K. Palaiologou 5

Nea Smirni 17121

Athens, Greece

Lt. Rogerio Guerra da Silveira
Rua Lopes Quintas, 390, apt. 402
Jardim Botanico, Rio de Janeiro
RJ 22240, Brazil

100

No. Copies,



10.

Wang Chia-Fu

No. 9, Aly. 30, Ln. 185, Central' Rd. Sec. 4
Tu-Cheng 23604, Taipei County

. Taiwan R.O.C

Won Wen-1
SMC 1830, NPS

Monterey, CA 93943

101




